- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Hayashi, Maki (2)
-
Aihara, Yusuke (1)
-
Campos, Cláudia (1)
-
Damineli, Daniel Santa (1)
-
Feijó, José A. (1)
-
Fukatsu, Kohei (1)
-
Hayashi, Yuki (1)
-
Hoffmann, Robert D. (1)
-
Kinoshita, Toshinori (1)
-
Kuwayama, Shogo (1)
-
Lima, Pedro T. (1)
-
Murakami, Kei (1)
-
Nunes, Custódio O. (1)
-
Olsen, Lene Irene (1)
-
Palmgren, Michael (1)
-
Pedersen, Jesper T. (1)
-
Portes, Maria Teresa (1)
-
Sato, Ayato (1)
-
Takahashi, Koji (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Phosphorylation of the penultimate residue, threonine (pen-Thr), of plasma membrane (PM) H+-ATPase is essential for its activation and blue light (BL)-induced stomatal opening. However, the regulatory mechanism of action of PM H+-ATPase pen-Thr phosphorylation is not completely understood. Here, we performed screening using a protein kinase inhibitor library and found that tyrphostin AG126 inhibited phosphorylation of PM H+-ATPase pen-Thr in guard cells in response to light and fungal toxin fusicoccin (FC), in addition to inhibition of light- and FC-induced stomatal opening. Analysis of the structure–activity relationship using AG126 derivatives revealed the hydroxyl group at the C-5 position of the compound to be essential for its activity. We further characterized one AG126 derivative, AGD-1, which effectively suppressed BL-induced stomatal opening with a half-inhibitory concentration of 2.0 μM. AGD-1 inhibited PM H+-ATPase pen-Thr phosphorylation in guard cells in response to BL and FC. In addition, AGD-1 suppressed FC-induced PM H+-ATPase pen-Thr phosphorylation in mesophyll cell protoplasts, implying that the effect of AGD-1 is not specific to guard cells. Furthermore, to improve the permeability of AGD-1, we synthesized acetylated AGD-1 (AcAGD-1), which was found to suppress BL- and FC-induced stomatal opening. AcAGD-1 suppressed light-induced PM H+-ATPase pen-Thr phosphorylation, but not Thr881 phosphorylation, in leaf discs, which is important for guard cell PM H+-ATPase activation in addition to pen-Thr phosphorylation. This study identified a novel stomatal opening inhibitor capable of specifically inhibiting PM H+-ATPase pen-Thr phosphorylation.more » « lessFree, publicly-accessible full text available May 21, 2026
-
Hoffmann, Robert D.; Portes, Maria Teresa; Olsen, Lene Irene; Damineli, Daniel Santa; Hayashi, Maki; Nunes, Custódio O.; Pedersen, Jesper T.; Lima, Pedro T.; Campos, Cláudia; Feijó, José A.; et al (, Nature Communications)
An official website of the United States government
